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Abstract. This essay develops the basic generic theory of orthogonal polyno-
mials on the real axis, in order to present Favard's theorem. A generalization of
the concept of orthogonal polynomials on a complex contour is also developed.
This essay emphasizes the family formed by the iterates of a complex polyno-
mial T. This leads to an orthogonal polynomial sequence which is orthogonal
�on� the Julia set generated by T.
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Part 1. General theory of orthogonal polynomials on the real axis

1. Introduction

The concept of orthogonal polynomials on the real axis is often introduced in un-
dergraduate courses in mathematics, but mainly in the form of particular examples
like the Legendre polynomials. Nevertheless a much more general theory has been
developed in the 20th century. This theory emerged after the discovery of particular
examples which is why I will start by giving some of those examples and then try
to show how these examples can lead to a general theory. I will expose some of the
common properties that are veri�ed by every family of orthogonal polynomials up
to the Favard's theorem that gives a method to construct such a family.

Then I focus on a generalization of the concept of orthogonality of polynomials
on a complex contour in order to obtain the main result of this essay which is: geven
any complex polynomial its iterates lead to a subsequence of a family of orthogonal
polynomials. In order to prove this, we will have to go through the concept of Julia
sets and consequently the concept of fractals.

2. Examples leading to the first definitions

2.1. Examples.

Example 2.1. Legendre polynomials

Let (Pn)be the family of polynomials de�ned by

Pn (x) =
1

2n (n)!
dn

dxn

((
1− x2

)n)
It can be proved than each Pn is a polynomial of degree n and that they verify the
following relation:

∀ (m,n) εN× N,
∫ 1

−1

Pm (x)Pn (x) dx =
2

2n+ 1
δm,n

where δm,n is the classic symbol of Kronecker: δm,n =
{

1 if m = n
0 if m 6= n

. It can

therefore be said that the Legendre polynomials are orthogonal on the interval[
−1, 1

]
.

Example 2.2. Tchebychev polynomials

Let (Tn)be the family of polynomials de�ned by

Tn (x) = cos (n. arccos (x))

It can be proved that each Tn is a polynomial of degree n and that they verify the
following relation:

∀ (m,n) εN∗ × N∗,
∫ 1

−1

Tm (x)Tn (x) .
1√

1− x2
dx =

π

2
δm,n

This family of polynomials is therefore called an orthogonal family of polynomials
on the interval [−1, 1] with respect to the weigth function x 7→ 1√

1−x2 .
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Example 2.3. Laguerre Polynomials

Let (Ln)be the family of polynomials de�ned by

Ln =
1
n!

exp (x)
dn

dxn
(xn exp (−x))

It can be proved that each Ln is a polynomial of degree n and that they verify the
following relation:

∀ (m,n) εN× N,
∫ ∞

0

Lm (x)Ln (x) exp (−x) dx = δm,n

It is therefore said that the Laguerre polynomials form an orthogonal family of
polynomials on R+ with respect to the weight function x 7→ exp (−x). In this
case , because of the �normalisation� of the expression, it is said that the Laguerre
polynomials are orthonormal.

Example 2.4. Hermite Polynomials

Let (Hn)be the family of polynomials de�ned by

Hn (x) = (−1)n exp
(
x2
) dn

dxn
(
exp

(
−x2

))
It can be proved that each Hn is a polynomial of degree n and that the Hn's verify
the following relation:

∀ (m,n) εN× N,
∫ ∞
−∞

Hm (x)Hn (x) exp
(
−x2

)
dx =

√
π2n (n!) δm,n

It is therefore said that the Hermite polynomials are orthogonal on R with respect
to the weight function x 7→ exp

(
−x2

)
.

2.2. Observations.
In all the examples above, the polynomials are linked to a weight function and a
particular interval of R on which the weight function is integrable and ≥ 0. These
2 characteristics are enough to create an inner product for which the family is
orthogonal. Let w be the weight function and [a, b] the interval, then the inner
product <,> can be de�ned as follows:

∀(f, g)εC
[
a, b
]
, < f, g >=

∫ b

a

f (x) g (x)w (x) dx

These observations naturally lead to our �rst formal de�nitions.

2.3. Formal de�nitions.

De�nition 2.5. We call weight function on
[
a, b
]
, a function w which veri�es

the following properties:

• w is integrable on
[
a, b
]

• ∀xε
[
a, b
]
, w (x) ≥ 0

• w (x) > 0 on a subset of
[
a, b
]
of positive Lebesgue measure

• ∀nεN, the �moments� µn =
∫ b
a
xnw (x) dx <∞

Remark 2.6. The third property is here to ensure that
∫ b
a
w (x) dx > 0.The fourth

property is going to be needed further for the case of an unbounded
[
a, b
]
.
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De�nition 2.7. We call an orthogonal polynomial sequence (OPS) with re-
spect to the weight function w on [a, b], a sequence of polynomials {Pn}∞n=0 such
that:

• ∀nεN,deg(Pn) = n

• ∀ (m,n) εN× N, m 6= n⇒
∫ b
a
Pm (x)Pn (x)w(x)dx = 0

• ∀nεN,
∫ b
a
Pn (x)2

w(x)dx 6= 0

Remark 2.8. Clearly, the 4 examples above, because of their mentioned properties,
are OPS for their respective weight function.

Notation 2.9. Given a weight function w and an interval
[
a, b
]
we note:

L [f ] =
∫ b

a

f (x)w (x) dx

for any function f integrable on [a, b]. Therefore the �moments� condition of the
de�nition 2.7 can be noted ∀nεN,L [xn] <∞ and the orthogonality property of the
de�nition 2.5 can be noted

∀ (n,m) εN× N,m 6= n⇒ L [Pm(X)Pn(X)] = 0

The introduction of this notation will allow us to have much more general de�-
nitions for the OPS based on the fact that, given an arbitrary sequence of complex
numbers {µn}∞n=0, we can de�ne uniquely a linear functional L on the vector space
of the polynomials of one real variable R [X]. This naturally leads to the following
de�nition.

De�nition 2.10. Let {µn}∞n=0 εCN. We call themoment functional determined
by the moment sequence {µn}, the linear functional L : R [X] −→ C such that
∀nεN,L [Xn] = µn

This introduction of the concept of moment functional will naturally lead to a
new approach to the OPS by giving a new de�nition.

De�nition 2.11. A sequence (Pn)εR [X]N is called an OPS with respect to the
moment functional L , if it veri�es the 3 following conditions for any m,n ≥ 0 :

• deg(Pn) = n
• L [Pm (X)Pn (X)] = 0 for m 6= n
• L

[
(Pn (X))2

]
6= 0

3. General results on real orthogonal polynomials
1

3.1. Basic results.

Lemma 3.1.

Hypothesis:L is a moment functional, (Pn)εR [X]N

Conclusions: Those 3 properties are equivalent to each other

(1) {Pn(X)}is an OPS for L

(2) ∀nεN,∀πεRm[X],L[π(X)Pn(X)]
{

= 0 if m < n
6= 0 if m = n

(3) ∃(Kn)εCN, such that ∀(n,m)εN× N,L[XmPn(X)] = Knδm,n,Kn 6= 0

1The results presented in sections 3 and 4 are mainly taken from [2], but the proofs are more
detailed.
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Proof. Let us assume the conclusion (1). Since deg(Pn) = n, {P0, P1, . . . , Pm} forms
a basis of Rm[X]. Therefore ∀πεRm[X],∃(ck)mk=0such that π(X) =

∑m
k=0 ckPk(X).

Let πεRm[X]
�if m < n then L[π(X)Pn(X)] =

∑m
k=0 ckL[Pk(X)Pn(X)] (because L is linear)

= 0 ( because (Pn) is an OPS for L and m < n)
�if m = n then
L[π(X)Pn(X)] =

∑n
k=0 ckL[Pk(X)Pn(X)] = cnL[Pn(X)2]6= 0 ( because (Pn) is

an OPS for L)
So we have proved that (1)⇒(2).But (2)⇒(3), because 0 can always be written

Kn · 0 so by taking Kn = L[XnPn(X)] we have the property (3). The property (3)
⇒

L[Pm(X)Pn(X)] =
m∑
k=0

akL[XkPn(X)] = anKnδm,n

so this exactly leads to the fact that the (Pn) are OPS for L.Therefore (3)⇒(1) and
then (1)⇐⇒(2) ⇐⇒(3). This �nishes the proof. �

Theorem 3.2.

Hypothesis: (Pn) and (Qn) are OPS for a given moment functional L
Conclusion: ∃(cn)ε(C∗)N, such that , ∀nεN, Qn(X) = cnPn(X)

Proof. The property (2) of the Lemma 3.1 ⇒∀k < n, L[Pk(X)Qn(X)] = 0.But
(Qn) being an OPS , deg(Qn) = n = deg(Pn) therefore the {Pk}nk=0 form a basis
of Rn[X] and Qn can be written as follow: Qn(X) =

∑n
k=0 ckPk(X). There-

fore L[Pk(X)Qn(X)] = ckL[Pk(X)2] i.e. ck = L[Pk(X)Qn(X)]
L[Pk(X)2] . Then Qn(X) =∑n

k=0 ckPk(X) = cnPn(X) (because if k 6= n,ck = 0) and cn 6= 0 because of the
de�nition of an OPS and the property (3) of the Lemma 3.1. This �nishes the
proof. �

In order to introduce a concept of uniqueness of OPS for a given moment func-
tional, we need the following de�nition.

De�nition 3.3. We say that an OPS (Pn) for the moment functional L is monic

if the leading coe�cient of Pn(X) (coe�cient of Xn) is equal to 1.

Remark 3.4. It has to be noticed that at this point, the Theorem 3.2 directly gives
the following result: If there exists an OPS for a given moent functional L, then
there is a unique monic OPS for L.

If existence, we now have a result of uniqueness. It is now natural to focus our
interest on the problem of existence.

Theorem 3.5.

Hypothesis: L is a moment functional with a moment sequence {µn}
Conclusion: There exists an OPS for L

⇐⇒ ∀nεN,∆n = det(µi+j)ni,j=0 =

∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · · · · µn
µ1 µ2 · · · · · · µn+1

...
...

. . .
...

...
...

. . .
...

µn µn+1 · · · · · · µ2n

∣∣∣∣∣∣∣∣∣∣∣∣
6= 0
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Proof. �If there exist an OPS for L, let call it (Pn), then

∃(Kn)ε(C∗)N such that ∀ (m,n) εN× N,L[XmPn(X)] = Knδm,n

And then by writing Pn(X) =
∑n
k=0 cn,kX

k we have:

∀m ≤ n,
n∑
k=0

cn,kL[Xm+k] = Knδm,n

so
∑n
k=0 cn,kµm+k = Knδm,n.In other words the system of linear equations

(3.1)



µ0 µ1 · · · · · · µn
µ1 µ2 · · · · · · µn+1

...
...

. . .
...

...
...

. . .
...

µn µn+1 · · · · · · µ2n





cn,0
cn,1
...
...

cn,n

 =


0
0
...
0
Kn


has a unique solution. The solution is unique because if there is an other OPS

(Qn) that veri�es the same equality, then by the Theorem 3.2:

∃(cn)ε(C∗)N,∀nεN, Qn(X) = cnPn(X)

with

cn =
L[Pn(X)Qn(X)]
L[Pn(X)2]

=
cn,nL[XnQn(X)]
L[Pn(X)2]

=
cn,nKn

cn,nKn
= 1

therefore (Qn) = (Pn). Therefore, ∆n 6= 0 .
�Conversely, if ∆n 6= 0 , then the system (3.1) has a unique solution, and this

solution veri�es the property (3) of the Lemma 3.1. So this solution is an OPS for
L. This �nishes the proof. �

Theorem 3.6.

Hypothesis: (Pn) is an OPS for the moment functional L
Conclusion: ∀πεRn[X]�Rn−1[X],∀n ≥ 1, L[π(X)Pn(X)] = ankn∆n

∆n−1
where

anand kn are respectively the leading coe�cients of πand Pn

Proof. Let take πεRn[X]�Rn−1[X] then we can write π(X) = anX
n+γ(X) where

γεRn−1[X]. Therefore,

L[π(X)Pn(X)] = anL[XnPn(X)] + L[γ(X)Pn(X)]

the second term is equal to 0 by the property (3) of the Lemma 3.1. So we have

(3.2) L[π(X)Pn(X)] = anL[XnPn(X)] = anKn

But the Cramer formula applied to the system (3.1) tells us that cn,n = Kn
∆n−1
4n

but here cn,n is called kn . Therefore we have Kn = kn
∆n

∆n−1
. So (3.2) becomes

L[π(X)Pn(X)] = ankn
∆n

∆n−1

This �nishes the proof. �

Let now focus our attention on the in�uence of particular properties of the mo-
ment functional on the related OPS.
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3.2. Moment functional analysis.

De�nition 3.7. A moment functional L is called positive-de�nite, if

∀πεR[X], such that
{

π 6= 0R[X]

∀xεR, π(x) ≥ 0 we have L[π(X)] > 0

Theorem 3.8.

Hypothesis: L is a positive de�nite moment functional
Conclusion: L has real moments and a corresponding OPS of real polynomials

Proof. �For any integer k,the polynomial X2k veri�es the conditions that have to be
imposed to π in the De�nition 3.7 . So by de�nition of a positive-de�nite moment
functional, we have L[X2k] > 0 i.e µ2k > 0 so the moments of even indice are real
and strictly positive. Let us now prove by strong recurrence that for any integer
n µn is real. For n = 1, let us consider the polynomial (X + 1)2, it veri�es the
conditions imposed on π in the De�nition 3.7 so

(3.3) L[(X + 1)k] > 0

But (X + 1)2 = X2 + 2X + 1 , therefore (3.3) becomes µ0 + 2µ1 + µ2 > 0 ,
but µ0and µ2 are real so µ1 has to be real. Let us suppose that for any inte-
ger k ≤ 2n, µk is real. Let us now consider the polynomial (X + 1)2(n+1) =∑2n+2
k=0

(
2n+ 2
k

)
Xk the same reasoning as for the case n = 1 leads to the fol-

lowing relation:
∑2n+2
k=0

(
2n+ 2
k

)
µk > 0 using the recurrence relation , every

term (but µ2n+1) of this inequality is real, therefore µ2n+1 has to be real. We have
therefore proved that L has real moments.

�We can now construct explicitly an OPS for L . Let us take P0 = µ
− 1

2
0 and for

any integer n, Qn+1(X) = Xn+1 −
∑n
k=0 akPk(X) where ak = L[Xn+1Pk(X)] and

Pn+1(X) =
(
L[Qn+1(X)2]

)− 1
2 Qn+1(X). Then it is easy to prove by recurrence

that Pn is real for any n. Let us prove by strong recurrence that

∀m ≤ n,L[Pm(X)Pn(X)] = δm,n

For n=1

L[P0(X)P1(X)] = µ
− 1

2
0 L[(X − a0µ

− 1
2

0 )
(
L[P0(X)2]

)− 1
2 ] = µ

− 1
2

0 L[(X − a0µ
− 1

2
0 )µ

1
2
0 ]

= L[(X−a0µ
− 1

2
0 )] = L[X]−a0µ

− 1
2

0 L[1] = µ1−a0µ
− 1

2
0 µ0 = µ1−a0µ

1
2
0 = µ1−L[XP0(X)]µ

1
2
0

= µ1 − µ
− 1

2
0 L[X]µ

1
2
0 = µ1 − µ1 = 0

and,

L[P1(X)2] = L[(L[Q1(X)2])−1Q1(X)2] = 1
So the property is true for n=1. Let us suppose that it is true for any k less than
or equal to a given n. Then we have the relation

(3.4) L[Pm(X)Pn+1(X)] = L[Pm(X)(Xn+1 −
n∑
k=0

akPk(X))]
(
L[Qn+1(X)2]

)− 1
2
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= (am −
n∑
k=0

akL[Pm(X)Pk(X)])
(
L[Qn+1(X)2]

)− 1
2

�if m<n+1,

(3.4)= (am−
∑n
k=0 akδm,k)

(
L[Qn+1(X)2]

)− 1
2 = (am−am)

(
L[Qn+1(X)2]

)− 1
2 =

0
�if m=n+1,
(3.4)= L[Pn+1(X)2] = L[(L[Qn+1(X)2])−1Qn+1(X)2] = 1.
This �nishes the proof. �

Now let us introduce a Lemma that will be very useful later.

Lemma 3.9.

Hypothesis: π is a positive polynomial, not identically equal to 0
Conclusion: ∃(p, q)εR[X], π(X) = p(X)2 + q(X)2

Proof. π being positive, its real zeros have an even multiplicity and its complex zeros
are self-conjugated. Therefore we can write π(X) = r(X)2

∏
(X − αi)(X − ᾱi).

Let
∏

(X − αi) = A(X) + iB(X) then
∏

(X − ᾱi) = A(X) − iB(X). And so
π(X) = r(X)2(A(X)2 +B(X)2) = p(X)2 + q(X)2. This �nishes the proof. �

Theorem 3.10.

Hypothesis: L is a moment functional
Conclusion: L is positive-de�nite⇐⇒(its moments are real and ∆n > 0 for

any n)

Proof. �Because ∆n > 0, we have ∆n 6= 0 , therefore by the Theorem 3.2, there
exists a unique monic OPS for L let us call it (Pn). Then by Theorem 3.6 and

because (Pn) is monic we have L[Pn(X)2]= ∆n

∆n−1
> 0. Let pεR[X], because of their

degree, the elements of the OPS form a basis for R[X]. Therefore we can write
p(X) =

∑n
k=0 akPk(X), and so

L[p(X)2] =
n∑
j=0

n∑
k=0

akajL[Pk(X)Pj(X)] =
n∑
k=0

a2
kL[Pk(X)2] > 0

Let π be a positive not identically 0 polynomial. By Lemma 3.9,

∃(p, q)εR[X], π(X) = p(X)2 + q(X)2

And therefore L[π(X)] = L[p(X)2] + L[q(X)2] > 0 so L is positive-de�nite.
�Conversely, if L is positive-de�nite, then by the Theorem 3.8, its moments are

real and it has a real monic OPS. We have L[Pn(X)2] > 0 because L is positive-

defnite, but Theorem 3.6 says L[Pn(X)2] = ∆n

∆n−1
therefore all the ∆n must have

the same sign. But ∆0 = µ0 > 0 (result seen in the proof of Theorem 3.8) therefore
all the ∆n are strictly positive. This �nishes the proof. �
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4. Favard's Theorem

Theorem 4.1.

Hypothesis:L be a moment functional, and (Pn)be its monic OPS.
Conclusion: Pn satis�es the following three-terms recurrence relation: Pn+1(X) = (X − cn)Pn(X)− λnPn−1(X)

P0(X) = 1
P−1(X) = 0

where cn = L[XPn(X)2] and λn = ∆n∆n−2

∆2
n−1

.

Proof. Because Pn+1 is monic and because {P0, · · · , Pn} form a basis of Rn[X] ,
we can write :

(4.1) Pn+1(X) = (X − cn)Pn(X)− λnPn−1(X) +
n−2∑
k=0

ckPk(X)

Then applying the operator L[Pk.�] to (4.1) we obtain for k < n− 1:

L[Pk(X).(XPn(X))] + ckL[Pk(X)2] = 0

i.e

L[(XPk(X)).Pn(X)] + ckL[Pk(X)2] = 0
but deg(XPk(X)) < n therefore L[(XPk(X)).Pn(X)] = 0 moreover, L[Pk(X)2]being
non-zero, we obtain ck = 0.

We can now apply the operator L[Pn−1.�] to (4.1) which leads to

0 = L[(XPn−1(X)).Pn(X)]− λnL[Pn−1(X)2] = L[Xn.Pn(X)]− λnL[Pn−1(X)2]

= L[Pn(X)2]− λnL[Pn−1(X)2]
therefore by theorem 3.6

0 =
∆n

∆n−1
− λn

∆n−1

∆n−2

and so λn = ∆n∆n−2

∆2
n−1

.

We can now apply the operator L[Pn.�] to (4.1) which leads to

0 = L[XPn(X)2]− cnL[Pn(X)2]

and therefore cn = L[XPn(X)2]
L[Pn(X)2] . This �nishes the proof. �

So we have seen that, given a moment functional L, the associated OPS auto-
matically veri�es a three-terms recurrence relation. There is a beautiful converse to
this fact, which is known as Favard's theorem, and that says that every polynomial
family, which veri�es such a three term recurrence relation, is in fact an OPS for a
certain moment functional.

De�nition 4.2. A moment functional L is said quasi-defnite ⇐⇒ ∀nεN,∆n 6= 0
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Theorem 4.3. Favard's Theorem

• Hypothesis:
� (cn) , (λn) εCN

� The polynomial family (Pn)is de�ned by the 3 terms recurrence relation Pn(X) = (X − cn)Pn−1(X)− λnPn−2(X)
P−1(X) = 0
P0(X) = 1

• Conclusion:

(1) There exists a unique moment functional L such that L[1] = λ1 and
L[Pm(X)Pn(X)] = 0 for m 6= n

(2) L is quasi-de�nite and (Pn) is its monic OPS⇐⇒ ∀nεN, λn 6= 0
(3) L is positive-de�nite ⇐⇒∀nεN, λn > 0 and cn is real

Proof. (1). Let us construct L explicitly by the following recursive de�nition.
L[1] = λ1 = µ0 then we use the fact that we want for any n>0 L[Pn(X)] = 0

and we use the recurrence relation to de�ne (µn). For n=1, we have

P1(X) = (X − c1)P0(X)− λ1P−1(X) = X − c1 = 0

therefore µ1−c1µ0 = 0 and we have found µ1. Then the µn are uniquely determined.
So, for a given µ0, we have a unique L that veri�es L[Pn(X)] = 0. Then we can
prove by recurrence that L[XmPn(X)] = 0 for any n and any m<n. The recurrence
relation can be written

(4.2) Pn+1(X) + cPn(X) + λPn−1(X) = XPn(X)

If we apply L to (4.2), we obtain

L[XPn(X)] = L[Pn+1(X)] + cnL[Pn(X)] + λnL[Pn−1(X)] = 0

by construction of L. So for any n>1, L[XPn(X)] = 0. If we multiply the identity
(4.2) by X then apply L, we obtain:

L[X2Pn(X)] = L[XPn+1(X)] + cnL[XPn(X)] + λnL[XPn−1(X)]

So for any n>2, L[X2Pn(X)] = 0. Then, if we keep going this way, we obtain for
any m, for any n>m, L[XmPn(X)] = 0. Therefore there exists a unique moment
functional L such that L[1] = λ1 and L[Pm(X)Pn(X)] = 0 for m 6= n. This proves
the property (1).

(2).For m=n, we have

L[XnPn(X)] = L[Xn−1Pn+1(X)] + cnL[Xn−1Pn(X)] + λnL[Xn−1Pn−1(X)]

= λnL[Xn−1Pn−1(X)]
Therefore,

(4.3) L[XnPn(X)] = λnλn−1 · · ·λ2λ1

�So if ∀nεN, λn 6= 0 , then L[Pn(X)2] 6= 0 which was the missing property to
ensure that (Pn) is an OPS (monic because of the recurrence relation) for L (with
Lemma 3.1 ) so by Theorem 3.5, ∆n 6= 0 which means that L is quasi-de�nite.
�Conversely, if L is quasi-de�nite and (Pn) is its monic OPS, then L[Pn(X)2] 6= 0

which leads directly (with (4.3)) to the fact that ∀nεN, λn 6= 0. This proves the
property (2).
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(3).�If ∀nεN, λn > 0 and cn is real, then all the µn are real (by construction and
because cn and λn are real) and by Theorem 3.6. We have the relation:

L[Pn(X)2] =
∆n

∆n−1
= λnλn−1 · · ·λ2λ1 > 0

therefore all the ∆n have the same sign but ∆0 = µ0 > 0 so ∀nεN,∆n > 0. And
therefore, by Theorem2.10, L is positive-de�nite.
�Conversely, if L is positive-de�nite then by Theorem 3.10 ∀nεN,∆n > 0 and

then L[Pn(X)2] = ∆n

∆n−1
= λnλn−1 · · ·λ2λ1 > 0 and this is true for any n, this

means that all the λn are strictly positive. Moreover, the µnand the λn being real,
their construction implies that the cn are real as well. This proves the property (3)
and �nishes the proof of the theorem. �
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Part 2. Complex generalization and link to Julia sets

5. Introduction to Julia sets
2

De�nition 5.1. In numerical analysis, the �xed point iteration method is a
method of computing �xed points of iterated function. More precisely, given a
continuous function f : C −→ C and an initial value z0, we create the following

sequence:

{
zn+1 = f(zn)
z0 = z0 . If this sequence converges, then the limit is a �xed

point of f .

Figure 5.1. Example o fthe �xed point iteration method for the
function sinus with initial value z0 = 2

We will now focused our attention on the �xed point iteration method obtained
for a polynomial T.

De�nition 5.2. A point zεC is called an attractive point for T, if there exist an
initial condition z0εC such that the sequence de�ned by the related �xed point
iteration method converges to z.

Remark 5.3. z can be �nite or in�nite.

De�nition 5.4. We call the basin of attraction of an attractive point z,and we
note AT (z), the set of all the initial conditions z0 such that sequence de�ned by the

related �xed point iteration method converges to z i.e AT (z) =
{
z0εC, lim

n→∞
zn = z

}
Example 5.5. Let us consider the polynomial T (z) = z2, then AT (1) = {−1, 1}
De�nition 5.6. The polynomial Julia set JT set is the boundary of the basin
of attraction of the point at in�nity i.e JT = ∂AT (∞)

Example 5.7. Let consider the polynomial T (z) = z2 then
zn = z2n

0 so lim
n→∞

zn =∞⇐⇒ |z0| > 1.
Let D1 be the unit disc of C and C1 = ∂D1 be the unit circle. Therefore

AT (∞)=C�D1 and JT = C1.

2A nice introduction, historically and mathematically complete can be found in [7]
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Note 5.8. In the previous example, the Julia Set associated to the polynomial T is
very simple. Nevertheless, these sets are most of the time fractal sets. For example,
let us consider the Polynomial T (z) = z2 + c where c is a complex number, which
is the classical example that leads to fractal sets. Here are some pictures3 of the
Julia sets obtained for di�erent values of c.

Figure 5.2. c = 1− 1+
√

5
2 ; c = 0.285 + 0.01i ; c = 0.45 + 0.1428i

6. Reminder of complex analysis
4

De�nition 6.1. Let U be an open set of C and f : U−→ C. We say that f is

complex di�erentiable at the point z0εC if lim
z→z0

f(z)−f(z0)
z−z0 exists. If it is the

case, this limit is noted df
dz (z0).

De�nition 6.2. We say that a function f is holomorphic on an open subset
U ⊂ C, if f is complex di�erentiable at any z0εU .

De�nition 6.3. Given a closed complex contour Γ and a function f , parametrized
by a function ϕ piecewise di�erentiable on [a, b], then we de�ne the integral of f

on the contour Γ by the following relation:
∮

Γ
f(z)dz =

∫ b
a
f(ϕ(t))ϕ′(t)dt

De�nition 6.4. We say that a compact set K ⊂ C is regular , if ∂K is a piecewise
di�erentiable curve.

Theorem 6.5. Cauchy's Formula

Hypothesis:

• f is holomorphic on an open subset U ⊂ C
• K is a regular compact of U
• z0εK�∂K

Conclusion: f(z0) = 1
2iπ

∮
∂K

f(z)
z−z0 dz

3All the pictures of Julia sets of this essay have been taken from the article on Julia sets of
Wikipedia.
4These results are taken from my undergraduate course in complex analysis: [8]. Because the
results are very classic, I took the responsability not to prove all of them.
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De�nition 6.6. We say that a function f is analytic at a point aεC, if there
exists a disc centered in a (noted D(a) ) such that ∃(cn)εCN, ∀zεD(a), f(z) =
∞∑
n=0

cn(z − a)n.

Theorem 6.7. A function f is analytic at a point aεC⇐⇒∃U ⊂ C open, such that
aεU and f is holomorphic on U.

Proof. �Let f be holomorphic in a point a, then by de�nition we can �nd an open
disc D around a such that f is holomorphic there. Let us pick a point, say z, inside
this disc and then consider a circle C that lies inside the disc D such that z is in
the interior of the circle C. Then the Cauchy's formula says :
(6.1)

f(z) =
1

2iπ

∮
C

f(w)
w − z

dw =
1

2iπ

∮
C

w − a
w − a

f(w)
w − a− (z − a)

dw =
1

2iπ

∮
C

1
w − a

f(w)
1− z−a

w−a
dw

But
∣∣∣ z−aw−a

∣∣∣ < 1 by construction. Therefore 1
1− z−a

w−a

=
∞∑
n=0

(
z−a
w−a

)n
and the series

converges uniformly, therefore it commutes with the integral. Then (6.1) becomes:

∞∑
n=0

(z − a)n
1

2iπ

∮
C

f(w)
(w − a)n+1

dw =
∞∑
n=0

cn(z − a)n

And this is true for any z in the open disc generated by C, therefore f is analytic
in a.
�If f is analytic in a , we can write for any z in an open set containing a, that

f(z) =
∞∑
n=0

cn(z − a)n . Such a series is well known to be in�nitely di�erentiable in

a therefore it is di�erentiable once and then f is holomorphic in a. This �nishes
the proof. �

Theorem 6.8.

Hypothesis: Let f be an analyic function on an annulus
A = {zεC, 0 < R1 ≤ |z| ≤ R2} and Γr any circle de�ne by |z| = r and R1 < r <

R2

Conclusion: Then f has a Laurent series development on A i.e

∀zεA, f(z) =
∞∑
anz

n

n=−∞
and an = 1

2iπ

∮
Γr

f(z)
zn+1 dz

7. Padé Approximation
5

De�nition 7.1. Let g be an analytic function at the origin of the complex plane.
A Padé approximant to g is a rational function of degree (n,m) noted [n,m]gsuch
that g(z)− [n,m]g (z) =

z→0
O(|z|m+n+1). In other terms , we can write :

[n,m]g (z) =
m+n∑
n=0

zn

n!
g(n)(0) +O(|z|m+n+1)

5More about this topics in [3]or [6]
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If g is analytic in a neighbourhood of in�nity, then the Padé approximant of
degree (n,m) to g at in�nity, noted [n,m]∞g verify:

g(z)− [n,m]∞g (z) =
z→∞

O(
∣∣∣∣1z
∣∣∣∣m+n+2

)

Proposition 7.2. Given an analytic function g in a neighbourhood of in�nity, the
Padé approximant of a given degree (n,m), n ≤ m is unique.

Proof. Let R1 = P1
Q1

and R2 = P2
Q2

be two Padé approximant to g of degree (n,m)

Then we have the two following relations:

{
g(z)−R1(z) = O(

∣∣ 1
z

∣∣m+n+2)
g(z)−R2(z) = O(

∣∣ 1
z

∣∣m+n+2)
by

subtracting those two relations we obtain: R1(z)−R2(z) = O(
∣∣ 1
z

∣∣m+n+2) i.e P1(z)
Q1(z)−

P2(z)
Q2(z) = O(

∣∣ 1
z

∣∣m+n+2) so by multiplying by Q1Q2 it follows

Q2(z)P1(z)−Q1(z)P2(z) = O(
∣∣∣∣1z
∣∣∣∣m−n+2

)

but the right hand side of this expression is a polynomial of degree m + n , and
m − n + 2 > 0 this force the polynomial to tend to zero when z tends to in�nity,
which is equivalent to the fact that the polynomial is equal to zero everywhere.
Therefore Q2(z)P1(z) − Q1(z)P2(z) = 0 and so by dividing by Q1Q2 it follows
that R1 = R2. Here we can divide easily as the region we are interested in is a
neighbourhood of in�nity, therefore we can choose it outside the poles of R1 and
R2. �

8. Orthogonal polynomials on a complex contour
6

De�nition 8.1. Let g be an analytic function in a neighbourhood of in�nity, that

can be written g(z) =
∞∑
n=0

µn

zn+1
7. Let Γ be a big enough circle to be in the analycity

domain of g. We say that a family of complex polynomials (Pn) is an OPS with
respect to the weight function g on the contour Γ , if:

∃(hn)ε(C∗)N, s.t.,∀(n,m)εN2,
1

2iπ

∮
Γ

Pn(z)Pm(z)g(z)dz = hnδm,n

Note 8.2. As it can be noticed, in the complex we have decided to work with the
�rst de�nition of an OPS given at the begining of the �rst Part (De�nition 2.7).
The reason why we do not use the other formal de�nition that deals with moment
functional, is to avoid entering into deep measure theory. We will assume those
2 de�nitions to be equivalent and therefore, to avoid repetitions in this essay, we
will now assume (since the proofs are similar) that the results proved in the real

6The results presented in section 8 and 9 are mainly taken from [2],[4]or [5], but the proofs are
more detailed.
7g is therefore analytic in any annulus with a lower circle that lies in the analycity domain of g. So

we can develop g in Laurent series by Theorem 6.8 i.e. g(z) =
∞∑

anzn
n=−∞

with an = 1
2iπ

∮
Γr

g(z)

zn+1 dz

so, if we impose that g can be written g(z) =
∞∑
n=0

µn

zn+1 , it is the same that to impose that

g(z) −→
|z|→∞

0.
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case are conserved in the complex case. Especially the fact that for a given weight
function g and a contour Γ, there exists a unique monic OPS w.r.t g on Γ and
that all OPS verify the three-terms recurrence relation. Actually, not everything is
conserved. For example, the results about the location of the zeros of the orthogonal
polynomials are not. This is why I chose not to talk about it in my �rst part.

Remark 8.3. When we write, g(z) =
∞∑
n=0

µn

zn+1 , the µns are going to play the role of

what we have called before the �moments�. In fact,

1
2iπ

∮
Γ

zkg(z)dz =
1

2iπ

∮
Γ

zk
∞∑
n=0

µn
zn+1

dz =
1

2iπ

∮
Γ

zkg(z)dz =
∞∑
n=0

µn
2iπ

∮
Γ

dz

zn−k+1

=
∞∑
n=0

µn
2iπ

2π∫
0

iReiθdθ

(Reiθ)n−k+1
=
∞∑
n=0

µn
2πRn−k

2π∫
0

e−i(n−k)θdθ =
∞∑
n=0

µn
2πRn−k

2πδn,k = µk

Note 8.4. When the circle Γ is the unit circle, the polynomial of a corresponding
OPS are called Szègö polynomials.

Theorem 8.5.

• Hypothesis:

� g is an analytic function in the neighbourhood of in�nity
� Γ is a circle included in the analycity domain of g

• Conclusion: The constituant monic polynomials Pn of the OPS associated
to (Γ, g)are the denominator of the Padé approximation [n− 1�n]∞g .

Proof. Let nεN . We can, without loss of generality, suppose that the poles of
[n− 1�n]∞g are in the interior of the circle Γ. Therefore, [n− 1�n]∞g (z) is holo-

morphic for |z| ≥ RΓ where RΓ is the radius of the circle Γ. Therefore, the function
z 7−→ z2n+1(g(z)− [n− 1�n]∞g (z)) is holomorphic for |z| ≥ RΓ. Let call this func-

tion Rn(z). But we know that g(z)−[n− 1�n]∞g (z) = O(
∣∣ 1
z

∣∣2n+1). Therefore there
exists a constant c such that |Rn(z)| < c for large enough z. And Dn(z) ∼

z→∞
zn,

therefore for large enough z, |Dn(z)| ≤ 2 |z|n. If we write [n− 1�n]∞g (z) = Nn−1(z)
Dn(z)

where Nn−1(z) is a polynomial of degree n-1 and Dn(z) is a monic polynomial of
degree n, we have

g(z)Dn(z)−Nn−1(z) = Rn(z)
Dn(z)
z2n+1

Let kε {0, 1, · · · , n− 1}. If we multiply the previous relation by zkand then integrate
along Γ, we obtain:

1
2iπ

∮
Γ

zkg(z)Dn(z)dz − 1
2iπ

∮
Γ

zkNn−1(z)dz =
1

2iπ

∮
Γ

Rn(z)
Dn(z)
z2n+1−k dz

The second term of the left hand side of the previous equation is equal to 0. In fact,
if we note, f(z) = zk+1Nn−1(z), f is holomorphic on C, and Γ can be considered
as the boundary of a regular compact of C (the closed disc of radius RΓ). 0 is in
the interior of this compact, therefore we can apply the Cauchy's formula:

f(0) =
1

2iπ

∮
Γ

f(z)
z

dz =
1

2iπ

∮
Γ

zkNn−1(z)dz
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But it is obvious that f(0) = 0 , therefore the result follows.
�The term of the right hand side of the equation is also equal to 0. In fact,∣∣∣∣∣∣ 1

2iπ

∮
Γ

Rn(z)
Dn(z)
z2n+1−k dz

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1
2iπ

2π∫
0

Rn(RΓe
iθ)

Dn(RΓe
iθ)

(RΓeiθ)2n+1−k iRΓe
iθdθ

∣∣∣∣∣∣
≤ 1

2π

2π∫
0

∣∣Rn(RΓe
iθ)
∣∣ ∣∣Dn(RΓe

iθ)
∣∣R−2n+k

Γ dθ

≤ cR−2n+k
Γ sup

θε[0,2π]

∣∣Dn(RΓe
iθ)
∣∣ ≤ 2cR−2n+k

Γ Rn ≤ 2cRk−nΓ

and by Theorem 6.8 , the left hand side of this inequality is constant. But the right
hand side −→ 0

RΓ→∞
for k < n therefore the left hand side is equal to 0.

�If k = n, we have that for the same reason the second term of the right hand
side is equal to zero. But

1
2iπ

∮
Γ

Rn(z)
Dn(v)
z2n+1−k dz =

1
2iπ

∮
Γ

Rn(z)
Dn(v)
zn+1

dz ∼
z→∞

1
2iπ

∮
Γ

Rn(z)
z

dz

because Dn is monic and its degree is n. But by de�nition Rn(z) −→
z→∞

γn with

γn 6= 0 . Therefore

1
2iπ

∮
Γ

Rn(z)
z

dz ∼
z→∞

γn
2iπ

∮
Γ

1
z
dz = γn 6= 0

�It means that for any k < n, 1
2iπ

∮
Γ
zkg(z)Dn(z)dz = 0 , and 1

2iπ

∮
Γ
zng(z)Dn(z)dz 6=

0, which is exactly the condition of being an OPS according to the Lemma 3.1. �

9. Topic on Polynomial Iteration

Theorem 9.1.

Hypothesis: Let W and T be monic polynomials of respective degree d-1 and d
Conclusion: The functional equation: g(z) = W (z)g(T (z)) admit a unique

solution g∞ which is holomorphic on the basin of attraction of T at ∞: AT (∞)
and respect zg(z) −→

z→∞
1.

Remark 9.2. Since AT (∞) is a neighbourhood of in�nity, the theorem implies that
the solution is holomorphic in a neighbourhood of in�nity.

Notation 9.3. We will note the space of the holomorphic functions on a point a,
H(a). And the set of the functions holomorphic on a set A, H(A). Therefore the
set of the holomorphic functions in a neighbourhood of in�nity will be H(∞).

Note 9.4. This functional equation can be compared with the general concept of
Schröder's equation8 which consists in the following: given p a function that maps
the unit disc U to itself and that is holomorphic on it, and a complex number a , we
want a holomorphic solution on the unit disc, f , that veri�es ∀zεU, f(p(z)) = af(z)
In fact, if we write our equation in this form ( assuming that it is possible...)

1
W (z)g(z) = g(T (z)), we can clearly see the similitude between the 2 equations, the

8More about this topic in [9].
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latter being a sort of generalisation from a complex number a to a given rational
function. The Shröder's equations are especially important in complex dynamics.

Proof. Let take g0εH(∞) i.e. ∃R > 0,∀ |z| > R, g0(z) =
∞∑
k=0

µ
(0)
k

zk+1 . And then

construct the following ��xed point iteration method�: gn+1(z) = W (z)gn(T (z))
then by iterating it, we get:

gn(z) = W (z)W (T (z))W (T (2)(z)) · · ·W (T (n−1)(z))g0(T (n)(z)) = Rn(z)T (n)(z)g0(T (n)(z))

where

Rn(z) =
W (z)W (T (z))W (T (2)(z)) · · ·W (T (n−1)(z))

T (n)(z)
(We can therefore say that gnεH(∞).) T being of degree d, it is obvious that T (n)

is of degree dn. So W being of degree d-1, we have that W (T (k)(z)) is of degree
(d− 1)dk. Therefore

deg(W (z)W (T (z))W (T (2)(z)) · · ·W (T (n−1)(z))) =
n−1∑
k=0

(d− 1)dk = dn − 1

Thus Rn is a rational function of degree (dn − 1, dn). Because T is monic and

of degree d, we have the approximation: T (k)(z) v
z→∞

zd
k

. And W (T (k)(z)) v
z→∞

(zd
k

)d−1 = zd
k+1−dk

. Therefore

Rn(z) v
z→∞

n−1∏
k=0

zd
k+1−dk

zdn =
zd

n−1

zdn =
1
z

therefore Rn is holomorphic in a neighbourhood of in�nity. But

T (n)(z)g0(T (n)(z)) = µ
(0)
0 +O(

1∣∣T (n)(z)
∣∣ ) = µ

(0)
0 +O(

1
|zdn |

)

Hence we have:

gn(z) = Rn(z)T (n)(z)g0(T (n)(z)) = µ
(0)
0 Rn(z)+Rn(z)O(

1
|zdn |

) = µ
(0)
0 Rn(z)+O(

1
|zdn+1|

)

because Rn(z) v
z→∞

1
z we have that zgn(z) v

z→∞
µ

(0)
0 so for a limit with the condition

zg(z) −→
z→∞

1 to exist, we need µ
(0)
0 = 1. Therefore gn(z) = Rn(z) +O( 1

|zdn+1| ). But
Rn , by construction, does not depend on g0.

Then if the series converges to a g∞εH(∞) , we will have : ∀nεN,∀k < dn, µ
(∞)
k =

µ
(n)
k therefore, the coe�cients being explicitly given by those of Rn. Because we

have
gn(z) = Rn(z) +O( 1

|zdn+1| )
g∞(z) = gn(z) +O( 1

|zdn+1| )

}
⇒ g∞(z) = Rn(z) +O(

1
|zdn+1|

)

We therefore have obtained a Laurent series g∞(z) =
∞∑
n=0

µ(∞)
n

zn+1 . Let us show that

this Laurent series is holomorphe on AT (∞).
We know that zg∞(z) −→

z→∞
1 by construction. Therefore for a large enough z,

zg∞(z) can be bounded by a constant, therefore this function is in H(∞), and it
follows that g∞ is as well ( because z −→ 1

z is in H(∞) and H(∞) is stable by
18



multiplication). But we have by construction the functional equation: g∞(z) =
W (z)g∞(T (z)) therefore for every point a in AT (∞), we can iterate this relation

until T (n)(a) enter the analycity domain of g∞ and then write

g∞(z) = W (z)W (T (z)) · · ·W (T (n−1)(z))g∞(T (n)(z))

then the right hand side is clearly analytic in a therefore g∞ is analytic in a and it
is true for any a in AT (∞), it means that g∞ is analytic (holomorphic) on AT (∞).
This �nishes the proof. �

Remark 9.5. Therefore, given the monic polynomial W and T of respective degree
d-1 and d,

∃!gεH(AT (∞)), s.t.

{
∀zεC, g(z) = W (z)T (g(z))

zg(z) −→
z→∞

1

Theorem 9.6. If g is the solution found in the previous theorem of the functional
equation g(z) = W (z)T (g(z)), then the Padé approximants to g at ∞verify the
following relation:

[dn− 1�dn]∞g (z) = W (z)[n− 1�n]∞g (T (z))

Proof. By de�nition of the Padé approximant, we get g(z) − [n − 1�n]∞g (z) =
O( 1
|z|2n+1 ) then, by substituting T(z) for z and multiplying by W(z), we obtain:

W (z)g(T (z))−W (z)[n− 1�n]∞g (T (z)) = W (z)O(
1

|T (z)|2n+1 ) = O(
1

|z|2nd+1
)

i.e. because g is solution of the functional equation,

g(z)−W (z)[n− 1�n]∞g (T (z)) = O(
1

|z|2nd+1
)

Therefore, by uniqueness of the Padé approximant, we have

[dn− 1�dn]∞g (z) = W (z)[n− 1�n]∞g (T (z))

�

Theorem 9.7. Let T be a monic polynomial , then the family of the iterates of T(
T (n)

)
is a subfamily of an OPS.

Proof. Let W be a monic polynomial of degree d-1 (W (z) = zd−1 + w1z
d−2 + · · ·

) and T be of degree d ( W (z) = zd + t1z
d−1 + · · · ). Let consider g the unique

solution in H(AT (∞)) of
∀zεC, g(z) = W (z)T (g(z))

zg(z) −→
z→∞

1

∀aεAT (∞), g(z) =
∞∑
k=0

µk

zk+1

Then by the previous theorem, we have that

[dn− 1�dn]∞g (z) = W (z)[n− 1�n]∞g (T (z))

if we note [n − 1�n]∞g (z) = Qn−1(z)
Pn(z) with Pn monic then we have: Pdn(z) =

Pn(T (z)). And then by iterating k times: Pdkn(z) = Pn(T (k)(z)) which for n=1
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gives Pdk(z) = P1(T (k)(z)). But by theorem 7.2, (Pn) is the monic OPS with
respect to g, therefore we have the recurrence relation

Pn+1(z) = (z −An)Pn −RnPn−1

by putting P−1 = 0, we have P1 = (z −A0)P0 = z −A0. where

A0 =
1

2iπµ0

∮
Γ

z(P0(z))2g(z)dz =
1

2iπµ0

∮
Γ

zg(z)dz =
µ1

2iπµ0

But

zg(z) = zW (z)g(T (z)) = (zd+w1z
d−1+· · · )

∞∑
k=0

µk
T (z)k+1

v
z→∞

(zd+w1z
d−1+· · · ) µ0

T (z)

= (zd+w1z
d−1+· · · ) µ0

zd + t1zd−1 + · · ·
= (1+

w1

z
+· · · ) µ0

1 + t1
z + · · ·

v
z→∞

µ0(1+
w1 − t1

z
)

so by identi�cation we have that µ1 = µ0(w1 − t1) therefore by choosing W such
that w1 = t1 , we have µ1 = 0. And so A0 = 0 which leads to the following relation:
Pdk(z) = T (k)(z) and so each iterate of the polynomial T is a particular element of
the OPS related to g. This �nishes the proof. �

10. Conclusion

We have therefore shown that, given any polynomial T on the complex plane, the
family of the iterates of T forms a subfamily of an OPS on any circle that contains
the Julia set generated by T.

Figure 10.1. Illustration of a circle on which the family generated
by the iterates of T is an OPS

This essay could be continued by �rst trying to reduce the �area� of the contour
used in order to be closer to the Julia set itself. For this the restrictive point is
the Theorem 6.8. In fact, the contour chosen has to lie in an annulus. If we could
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extend this theorem to something more general than an annulus, this result would
follow. Then we could try to de�ne an integral on a fractal contour and try to
discover if the family generated by the iterates of T is actually orhtogonal on the
Julia set JT ( when this one is a �closed fractal� line 9 i.e when its connected), it
means that we would want to write for an analytic function g:

∃(hn)ε(C∗)N, s.t.,∀(n,m)εN2,

∮
JT

Pn(z)Pm(z)g(z)dz = hnδm,n

This will certainly lead to further theoretical analysis of the fractal complex con-
tours and will lead to a possible de�nition of an integral on it.

However, the result that we have shown already has a practical use. In fact, it
gives an easy (cheap) way to compute the iterates of a given polynomial (this is
usually quite expansive) using the 3 terms recurrence relation that veri�es the OPS.
Thus the �power� operations (non-linear) are replaced by simple linear additions.
This has been shown to be useful in image processing.
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