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Introduction

The problem of premixed combustion in a duct is investi-
gated using an asymptotic formulation, which is derived
from first principles and based on low Mach number
and high activation energy assumptions [6]. Contrary to
other flame models, such as the Michelson-Sivashinsky
equation or the G-equation, the present approach is
complete in the sense that it takes into account the
interactions between the flame and the spontaneous
acoustic field, as well as the interactions between the
hydrodynamic field and the flame. The focus is on
the fundamental mechanisms of combustion instability.
To this end, a linear stability analysis of some steady
curved flames is carried out. These steady flames
were known to be stable when the spontaneous acoustic
perturbations are ignored, but we have shown that they
are actually unstable when the latter effect is included.
In order to corroborate this result, a coupled weakly non-
linear numerical simulation is implemented. The linear
instability result is confirmed by the numerical study.
In the present work, motivated by [5], we also study
the effect of vortical disturbances in the oncoming fresh
mixture. These vortical disturbances cause wrinkling of
the flame, and resonance between flame oscillations and
acoustic fluctuations.

Problem formulation and asymp-

totic analysis

We consider the problem of pre-mixed combustion in
a duct. We consider the combustion as a one-step
irreversible chemical reaction, where the fuel is the
deficient reactant (lean combustion). The mixture is
assumed to obey the state equation for a perfect gas and
the fluid is assumed to be Newtonian. Following [6], we
consider five governing equations, namely the equations
of conservation of mass, momentum and energy, as well as
the state equation and the transport equation governing
the diffusion of chemical species. The problem is then
non-dimensionalised. The space variables are scaled by
h∗ = h/2, where h is the width of the duct. The
density and the temperature are scaled by ρ−∞ and θ−∞,
the density and temperature in the fresh mixture. The
velocities are scaled by UL, the laminar speed of flame
propagation. The geometry of the problem is described
in Figure 1.

This process of non-dimensionalisation leads to a system
of five governing equations, in which δ represents the
flame thickness, G represents the gravity term, β the
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Figure 1: Non-dimensionalised geometry of the problem

activation energy, M the Mach number and q the mean
heat release. Following [2], the flame front is defined
as a flame discontinuity in the hydrodynamic field by
x = f (y, z, t) (see Figure 1). In order to track this
flame front, we perform a change of variable to express
the problem in the flame frame of reference. We pass
from the variables (x, y, z, t) to the variables (ξ, η, ζ, τ),
where ξ = x − f (y, z, t) , η = y, ζ = z and τ = t.
By expressing the velocity field as ~u = u−→eξ + ~v and

considering a reduced gradient ∇̃ = (∂/∂η ∂/∂ζ)
T
, we

obtain a new system of equations in the flame frame of
reference. The new geometry of the problem is described
in Figure 2.

In order to simplify the problem, we make three main
asymptotic assumptions: a large activation energy (β ≫
1), a small flame thickness (δ ≪ 1) and a low Mach
number (M ≪ 1). The inequality δ/β ≪ δ ≪ 1 ≪ 1/M
results in four asymptotic zones described in Figure 2:
the reaction zone where most of the chemistry occurs,
the pre-heated zone where thermal diffusion is important,
the hydrodynamic zone and the acoustic zone.

2π

η = π

ξ = 0

ξ

η = −π

ζ

O(1)

Reaction zone

O(1/M)

Acoustic zone O(1/M)

Acoustic zone

η
O (δ/β)

Hydrodynamic zone

Pre-heated zone
O(δ)

Figure 2: Flame frame of reference geometry and different
asymptotic zones

A careful asymptotic analysis leads to the definition of

the acoustic velocity and acoustic pressure ua

(
ξ̃, τ
)
and

pa

(
ξ̃, τ
)
, where ξ̃ is the stretched longitudinal variable



defined by ξ̃ = Mξ. This acoustic field is described by
the following system of equations:

{
∂pa

∂τ
+ ∂ua

∂ξ̃
= 0

R ∂ua

∂τ
+ ∂pa

∂ξ̃
= 0

, (1)

where ρ = R + O (δ). It is also possible to derive the
following jump conditions across the hydrodynamic zone:





[[pa]]
+
− = 0

[[ua]]
+
− = Ja (τ) = q

2

(
∇̃F

)2 , (2)

where the overbar represents a space average and
[[ ]]+− represents the jump across the hydrodynamic
zone and f = F + O (δ). By introducing new

hydrodynamic variables U, ~V and P defined by

(u,~v, p) =
(
U, ~V , P

)
+O (δ) into the governing equations

and partially linearising the result, one obtains a system
of equations describing the hydrodynamic field:





∂U
∂ξ

+ ∇̃ · ~V = 0

R ∂U
∂τ

+ ∂U
∂ξ

= −∂P
∂ξ

R ∂~V
∂τ

+ ∂~V
∂ξ

= −∇̃P

(3)

and the jump conditions across the flame front:





[U ]+− = 0[
~V
]+
−

= −q∇̃F

[P ]+− = −
(
La (τ) +

qG
1+q

)
F

, (4)

where [ ]
+
− represents the jump across the flame and

La (τ) is a term of acoustic acceleration defined by

La (τ) =
[[

∂pa

∂ξ̃

]]+
−
. Finally, the flame front is described

by the so-called flame equation:

∂F

∂τ
= U

(
0−, η, ζ

)
−

1

2

(
∇̃F

)2
+ δν∇̃2F, (5)

where ν represents the Markstein length of the problem.

Linear stability analysis of curved

steady solutions

Considering the simplified 2D problem (i.e the variables
of the problem are now (ξ, η, τ)) and using Fourier
analysis, it is possible to compute some curved steady
solutions of the flame equation (5). It can be shown
(see [1]) that when neglecting gravity (i.e. G = 0), the
steady solutions obtained correspond to the steady N -
pole coalescent solutions of the Michelson-Sivashinsky
equation. These steady solutions have been proved to
be stable in [3] and [4] where acoustic fluctuations are
artificially ignored. An important parameter arising from
this study is the parameter γ defined by γ = q/ (δν).
Performing a linear stability analysis of these curved
steady states with our complete model (i.e. including
acoustic fluctuations) results in a non-linear eigenvalue
problem depending on the mean position σ of the flame

in the duct. In order to simplify the problem, we linearise
around the first acoustic mode ω1 (σ) of the duct. As seen
in Figure 3 and demonstrated in [1], solving the resulting
linear eigenvalue problem for each value of σ shows that
the curved steady solutions are actually linearly unstable
when the spontaneous acoustic fluctuations are taken
into account.
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Figure 3: Result of the linear stability analysis for γ = 2.1

Spectral flame equation and nu-

merical resolution

Starting from the system {(3),(4),(5)}, and using Fourier
analysis, it is possible to summarise everything in one
single equation. This equation, the spectral flame
equation, lies in the spectral k-space arising when taking
the Fourier transform in the η-direction.

A
∂2F̂

∂τ2
+B(k)

∂F̂

∂τ
+ C(k, τ)F̂

= −|k|
(
ik′F̂ (k′)

)
⋆
(
ik′F̂ (k′)

)
(k)

−A
(
ik′F̂ (k′)

)
⋆

(
ik′

∂F̂

∂τ
(k′)

)
(k) +N0 (k, τ) , (6)

where A, B (k) and C (k, τ) are known coefficients
depending on k and the only time dependency in C (k, τ)
is directly related to the quantity La (τ). The hat symbol
̂ represents the Fourier transform in the η direction
and the star symbol ⋆ represents the convolution in the
k-space. Finally, N0 (k, τ) represents a forcing term
characterising the presence of vortical disturbances at the
inlet.

In order to corroborate the results of the linear stability
analysis, a numerical scheme has been developed. The
first thing to do is to solve the acoustic system {(1),(2)}
for a given function of time Ja (τ). This is done
with a semi-analytic method based on the method of
characteristics. The second important task is to solve
the spectral flame equation (6) for a given function of
time La (τ). This is done by considering it as an initial



value problem, where the initial condition is given by

{
F̂ (k, 0) = F̂0 (k)
∂F̂
∂τ

(k, 0) = 0
, (7)

where F̂0 (k) is the Fourier transform of the slightly
perturbed steady state of interest. This initial value
problem is then solved numerically, evaluating the con-
volution using the Fast Fourier Transform algorithm.
Hence at this stage, if we know Ja (τ), we can solve the
acoustic system, and if we know La (τ), we can solve
the spectral flame equation. The last step consists of
coupling these two methods so that at each time step, the
acoustic and the spectral scheme communicate in order
to evaluate accurately the values of Ja (τ) and La (τ).
The Figures 4 to 6 show the numerical results obtained
when no vortical disturbances are added to the system
(i.e. N0 (k, τ) ≡ 0), γ = 2.1 and σ = 0.5. Figure 4 shows
the evolution of Ja (τ), Figure 5 shows the evolution
of the acoustic pressure at the closed end of the tube,
exhibiting clearly the exponential growth corresponding
to the linear instability. In Figure 6, we present the
“time” power spectrum of the acoustic pressure, showing
the the first acoustic mode is indeed dominant. This
justifies the linearisation assumption used in the linear
analysis.

Figure 4: Evolution of the acoustic jump Ja (τ )

The evolution of the flame shape can be described
in three steps: at the beginning, the flame remains
close to the steady state, and starts oscillating up and
down. Meanwhile the acoustic pressure starts to amplify
exponentially. The flame starts to flatten while still
oscillating due to the stabilizing effect of the pressure.
Finally, when the acoustic pressure saturates, the flame
becomes completely flat and remains so.

Finally, Figure 7 shows the agreement between the
growth rate measured from the numerical results (ob-
tained for two different initial way of disturbing the
steady state) and the prediction of the linear stability
analysis.

A very interesting interpretation of these numerical
results is that, apart from validating the results of the

Figure 5: Evolution of the acoustic pressure at the closed
end of the duct

Figure 6: Power spectrum of the acoustic pressure

linear stability analysis, they show that a flat flame,
which is intrinsically unstable in a silent environment due
to Darrieus-Landau instability, can survive and remain
flat in a noisy environment created by its spontaneous
sound.

Influence of vortical disturbances:

a secondary instability

The term N0 (k, τ) representing vortical disturbances
naturally takes the form

N0 (k, τ) = εe−(|k|−k0)
2

{(−iR−ω + |k|) e−iωτ + c.c.}
(8)

when deriving the spectral flame equation. k0 represents
the wave number of the disturbance (here k0 = 4) and ω
its frequency. As seen in Figure 8, when choosing ω =
ω1/2, the system exhibits a resonance phenomenon (it
does not happen for any other frequencies). The plots of
Figure 8 represent the envelope of the acoustic pressure
at the closed end of the duct for different strength of
vortical disturbances (i.e. different values of ε).

Here, it is again possible to describe the evolution of
the flame shape in a few steps. First it remains close



Figure 7: Comparison between numerical measurement and
linear stability analysis prediction

Figure 8: Envelope of the acoustic pressure for different
strength of vortical disturbances

to the steady state and start oscillating up and down
while being slightly wrinkled by the vortical disturbance.
Then, even though the slight wrinkling persists, the
overall shape of the flame tends to flatten, corresponding
to the first exponential growth of the acoustic pressure.
Following this, the flame remains wrinkled with a wave
number k0 and oscillate at the frequency ω around the
flat state. After a while, these oscillations start to grow
exponentially. This is due to the fact that the acoustic
acceleration now induces a parametric resonance. A
similar behaviour occurs with an initially flat flame
as was shown in [5]. Hence by slightly disturbing
the hydrodynamic field, we have triggered a secondary
instability.

Conclusion

A new generation of flame model has been investigated
analytically and implemented numerically, emphasising
the fact that it is fundamental to consider acoustic
fluctuation when modelling combustion. We have shown
that a flat flame could be stable under the influence
of its spontaneous sound. Finally, by adding vortical
disturbances, we exhibited a secondary type of com-

bustion instability based on a resonance between flame
oscillations and acoustic fluctuations.
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