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We shall consider the acoustic instability of premixed combustion in a duct. Our work fo-

cuses on the coupling between the spontaneous acoustic waves and the flame front. Using

large-activation-energy asymptotic methods, the flame front is described as a discontinuity

separating the burnt and unburnt mixtures. The flame front is dynamically coupled with the

hydrodynamic and acoustic fields as shown in recent work by Wu et al.. By assuming a lin-

ear hydrodynamic field, we obtain an improved Michelson-Sivashinsky flame equation, which

includes the back action of the acoustic field on the flame. The steady solutions of our equa-

tion are also steady solutions of the classic Michelson-Sivashinsky equation. Subsequently,

we shall perturb these steady solutions and study their stability. In particular, we will empha-

sise the fact that the unsteady perturbation must consist of spontaneous acoustic waves, and

that, when these are taken into account, the steady solutions are always unstable. This is an

important result given that previous authors have shown that steady solutions of the Michelson-

Sivashinsky equation could be stable when the acoustic perturbations are artificially excluded.

1. Introduction

We consider the problem of pre-mixed combustion in a duct (see Figure 1). We consider the

combustion as a one-step irreversible chemical reaction, where the fuel is the deficient reactant. The

mixture is assumed to obey the state equation for a perfect gas and the fluid is assumed to be Newto-

nian.
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Figure 1. Geometry of the problem

Following [1], we consider five governing equations, namely the equations of conservation of mass,

momentum and energy, as well as the state equation and the transport equation governing the dif-

fusion of chemical species. In order to simplify the problem, two classic combustion assumptions
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are made: we consider that the bulk viscosity can be neglected (Stokes’ hypothesis) and we assume

that the product of density and the mass diffusion coefficient is constant. The problem is then non-

dimensionalised. The space variables are scaled by h∗ = h/2π, where h is the width of the duct. The

density and the temperature are scaled by ρ−∞ and θ−∞ respectively, where ρ−∞ and θ−∞ are the

density and temperature in the fresh mixture (far away from the flame). The velocities are scaled by

UL, the mean propagating speed of the flame, while the scaling of other quantities arise “naturally”.

Figure 2 shows the non-dimensional geometry.
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Figure 2. Non-dimensionalised geometry of the problem

This process of non-dimensionalisation leads to a system of five governing equations (see [4]), in

which δ represents the flame thickness, Pr is the Prandtl number, Le is the Lewis number, Y is the

mass fraction of fuel, G represents the gravity term, Ω is the Arrhenius term, which is proportional

to δ−1e−β/θ (β being the activation energy), γ is the adiabatic index, M is the Mach number and q
is the heat release. The flame front is defined as a flame discontinuity in the hydrodynamic field by

x = f(y, z, t) (see Figure 2). In order to track this flame front, we perform a change of variable to

express the problem in the flame frame of reference. We pass from the variables (x, y, z, t) to the

variables (ξ, η, ζ, τ), where ξ = x− f(x, y, z, t), η = y, ζ = z and τ = t. By expressing the velocity

field as ~u = u−→eξ + ~v, considering a reduced gradient ∇̃ = (∂/∂η ∂/∂ζ)T and a new variable

s = u − ∂f/∂τ − ~v · ∇̃f , one obtains a new system of governing equations in the flame frame of

reference. The resulting geometry is shown in Figure 3.
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Figure 3. Geometry with a flame frame of reference
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2. Asymptotic analysis

In this study, we make three main asymptotic assumptions: a large activation energy (β ≫ 1),

a thin flame (δ ≪ 1) and a low Mach number (M ≪ 1). This results in four asymptotic regions

described in Figure 4: the reaction zone where ξ = O(δ/β), the pre-heated zone, where ξ = O(δ),
the hydrodynamic zone where ξ = O(1) and the acoustic zone where ξ = O(1/M). These regions

are consistent with our assumptions since we have δ/β ≪ δ ≪ 1 ≪ 1/M .
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Figure 4. Different asymptotic zones

2.1 Preliminary work in the hydrodynamic zone

In order to capture the hydrodynamic behaviour of the field, let us write a δ-expansion of the

main variables:

(ρ, θ, ~v, f, p, Y, s) = (R0,Θ, u0, ~v0, f0, p0, Y0, s0) +O(δ) (1)

Inputting (1) into the flame frame of reference governing equations, one obtains that R0 and Θ should

be constant and satisfy R0Θ = 1. Moreover, according to [1], the flame front is described by the

following flame equation:

∂f0
∂t

= u0(0
−, η, ζ, τ)− ~v0(0

−, η, ζ, τ) · ∇̃f0 −
[
1 +

(
∇̃f0

)2
]1/2

+ δν∇̃2
f0,

and the hydrodynamic field is subject to the following jump conditions across the flame front:

[u0] = q

[
1 +

(
∇̃f0

)2
]−1/2

, [~v0] = −q
(
∇̃f0

)[
1 +

(
∇̃f0

)2
]−1/2

, [p0] = −q.

2.2 The acoustic zone

In order to capture the acoustic behaviour of the field, one should first perform the change of

variable ξ̃ =Mξ in the governing system. We then write a M-expansion of the main variables. These

expansions arise naturally from balancing the governing equations:





u = U± + ua

(
ξ̃, τ

)
+O(M)

ρ = R0 +Mρa

(
ξ̃, τ

)
+O(M2)

{
p =M−1

{
pa

(
ξ̃, τ

)
− R0Gξ̃

}
+O(1)

θ = Θ+Mθa(ξ̃, τ) +O(M2)
. (2)
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Inputting (2) into the governing system and eliminating the variables θa and ρa leads to the equations

governing the acoustic fluctuations as well as their jump1 across the hydrodynamic zone:

{
∂pa
∂τ

+ ∂ua
∂ξ̃

= 0

−∂2pa
∂ξ̃2

+R0
∂2pa
∂τ2

= 0
,





[pa] = 0

[ua] = Ja(τ) = q

{[
1 +

(
∇̃f0

)2
]1/2

− 1

}
, (3)

where the notation represents a space average.

2.3 More on the hydrodynamic zone

In order to use our knowledge of the acoustic zone to describe the hydrodynamic zone, let us

define the new hydrodynamic variables U0,
−→
V0, S0, P0 and F0 by

{
u0 = U± + ua (0

±, τ) + U0

s0 = S0 + 1 + (q + Ja(τ)H(ξ) ,

{ −→v0 =
−→
V0

f0 = Fa + F0

(4)

and p0 =M−1pa(0, τ) +P± +
(
∂pa
∂ξ̃

(0±, τ)−R0G
)
(F0 + ξ) +P0, whereH is the classic Heaviside

function. Hence the flame equation describing F0 becomes

∂F0

∂τ
= U0(0

−, η, ζ)−−→
V0

(
0−, η, ζ

)
· ∇̃F0 −

{(
1 +

(
∇̃F0

)2
)1/2

− 1

}
+ δν∇̃2F0 (5)

Note that both the acoustic and hydrodynamic expansion of the pressure have been chosen carefully

so that gravity does not appear in the governing equations. Using (4), one obtains the equations

governing the hydrodynamic zone subject to the following jump conditions:




[U0] = q

[
1 +

(
∇̃F0

)2
]−1/2

− q − Ja(τ)

[~V0] = −q
(
∇̃F0

)[
1 +

(
∇̃F0

)2
]−1/2

[P0] = −
(
La(τ) + qG

1+q

)
F0

, (6)

where La(τ) represents the jump of ∂pa/∂ξ̃ across the hydrodynamic zone. The presence of Ja and

La in the hydrodynamic equations is clear evidence of acoustic coupling. This acoustic coupling

has been studied in [2], where an artificial cosine flame was perturbed and shown to be unstable. In

Section 3, we shall find explicit steady flames and study their stability in Section 4.

3. Steady state solutions to the flame equation

In order to find steady solutions of the flame equations, we shall now drop the index 0, consider

the problem as a 2D problem in space (the space variables are reduced to (ξ, η), and ~V = V ) and

assume that the velocity field is steady. Moreover we consider that there are no acoustic fluctuations

and that the hydrodynamic field is small. Under these assumptions, the equations describing the

hydrodynamic zone simplify significantly and become:





∂U
∂ξ

= −∂V
∂η

∂U
∂ξ

= −∂P
∂ξ

∂V
∂ξ

= −∂P
∂η

and





[U ] = 0

[V ] = −q
(
∂F
∂η

)

[P ] = −qG
1+q

F

. (7)

1Actually, in order to obtain [ua], more work is required. However for brevity, this will not be presented here.
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This system is then solved using Fourier transforms in the η direction (denoted by )̂. Hence all the

Fourier transforms of the main variables can be expressed in terms of F̂ , the Fourier transform of F .

The partially linearised flame equation then becomes




∂F
∂τ

= U(0−, η)− 1
2

(
∂F
∂η

)2

+ δν ∂
2F
∂η2

Û(0−, k
)
= qF̂

2

(
|k| − G

1+q

) . (8)

At this stage, one should notice the similarities between (8) and the well-known Michelson-Sivashinsky

(M-S) equation studied in detail in [3]. The M-S equation is the following:




∂ϕ
∂t

= 1
2
I(ϕ; η) + 1

γ
∂2ϕ
∂η2

+ 1
2

(
∂ϕ
∂η

)2

Î(ϕ; η)(k, t) = |k|ϕ̂(k, t
) . (9)

The similarity between (8) and (9) lies in the fact that if the gravity is neglected (G = 0), then the

two equations are equivalent via the change of variable t = qτ , ϕ = −F/q and δν = q/γ. In [3], a

rigorous theory about the M-S equation is presented. Let us summarise it briefly. The M-S equation

admits some N-poles solutions taking the form

ϕ(η, t) = ϕ0(t) +
2

γ

N∑

n=1

ln

[
1

2
{cosh(yn(t))− cos(rη − xn(t))}

]
, (10)

with N pairs of complex conjugate poles zn(t) = xn(t) + izn(t). The maximum value of poles

that may exist depends on γ and is given by Nmax = Int[γ/2]. Naturally, the poles tend to align

vertically. A coalescent pole solution is a pole solution such that the poles are aligned vertically

and a steady coalescent pole solution is a coalescent pole solution such that the location of the poles

is time-independent. One of the results in [3] is that for a given pair (γ,N), there exists a steady

coalescent pole solution only if N 6 N0(γ), where N0(γ) = Int[γ/4 + 1/2]. In addition, for a

given N 6 N0(γ), this solution is unique and denoted ϕ
N
(γ, η, t). The one and two-pole solutions

are known analytically. Hence this is a good way to verify which steady solutions are captured

numerically. In order to do so, we express F as a truncated Fourier series. The comparison between

theory and numerics is shown in Figure 5.
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Figure 5. Comparison between the theoretical steady solutions and the numerical steady solutions for two

values of γ, γ = 2.1 (left) and γ = 6.2 (right)

From Figure 5, it is clear that in the case of γ = 2.1 (N0 = 1), we have found numerically the unique

one-pole steady solution, while in the case γ = 6.2 (N0 = 2), we have found the unique two-pole

solution.
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4. Stability study

Now that we have found some steady solutions, we shall study their linear stability. In order to

do so, let us perturb the steady state, by writing, for a small value of ε:

{U, V, P, F, ua, pa} = {Us, Vs, Ps, Fs, (ua)s , (pa)s}+ ε
{
Ũ , Ṽ , P̃ , F̃ , ũa, p̃a

}
, (11)

where the subscript s represents the steady state and the superscript˜ represents the perturbation.

Inputting (11) into the hydrodynamic equations, considering that the product of two quantities is

small, one obtains the perturbed equations and jump conditions in the hydrodynamic and acoustic

zones. In order that the acoustic system be closed, one should impose some boundary conditions (b.c.)

at the extremities of the duct. In order to translate these conditions to the flame frame of reference,

it is convenient to define a position average of the flame front. This position average, denoted σ, is

defined in Figure 6. It is such that when the combustion starts (i.e. none of the mixture is yet burnt)

we have σ = 1 and when it stops (i.e. all the mixture has been burnt) we have σ = 0.
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Figure 6. Definition of σ

In order to obtain results concerning the stability of our steady state solutions, let us assume that the

perturbations are harmonic in time, that is that we can write

{
Ũ , Ṽ , P̃ , ũa, p̃a

}
= 2ℜ ({U,V,P,F, ua, pa} exp (iωτ)) . (12)

Hence if by some method, we manage to find ω and if ℑ(ω) < 0, then our solution is unstable. The

now closed acoustic system can be solved using (12) and Fourier transforms w.r.t. η. It leads to the

following acoustic dispersion relation:

∆s(ω, σ) =
1√
1 + q

tan(ωσL) tan

(
ω(1− σ)L√

1 + q

)
− 1 = 0. (13)

The hydrodynamic system can also be solved, hence the linearised perturbed flame equation becomes





∂F̃
∂τ

= Ũ(0−, η)− ∂Fs

∂η
∂F̃
∂η

+ δν ∂
2F̃
∂η2

Û(0−, k) =
q(|k|2− |k|G

1+q )
( iω
1+q

+|k|)+(|k|+iω)
F̂ +

iω|k|
1+q



1− q√
1+q

tan

(

ω(σ−1)L√
1+q

)

tan(ωσL)

∆s(ω,σ)





( iω
1+q

+|k|)+(|k|+iω)
JaF̂s

. (14)
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Again, one can compare this equation to the linearised perturbed M-S equations studied in [3] that is:

{
∂ψ
∂t

= 1
2
I (ψ; η) + 1

γ
∂2ψ
∂η2

+ ∂ϕN

∂η
∂ψ
∂η

̂I {ψ; η}(k, t) = |k|ψ̂(k, t)
. (15)

In order to obtain such a perturbed M-S equation, previous authors had to make three main assump-

tions. The first one is that ∂Ũ
∂τ

= ∂Ṽ
∂τ

= 0, the second one is to neglect acoustic perturbations and the

last one is to neglect gravity. If we make these assumptions, then equation (14) becomes the linearised

perturbed M-S (15) when the changes of variable t = qτ , ψ = −F̃ /q and δν = q/γ are made. The

theory developed in [3] is summarised in Figure 7.
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Figure 7. Summary of stability results about N-pole solutions

When making the aforementioned assumptions, expressing F̃ as a Fourier series, we can confirm these

results numerically (the flame equation is changed into a linear eigenvalue problem in ω). However,

when we are not making these simplification assumptions, the problem becomes more difficult to

solve. Indeed, writing F̃ as a Fourier series in η leads to a non-linear eigenvalue problem that is

σ-dependent. In order to solve it, for each value of σ, we linearise the eigenvalue problem around

a characteristic frequency, ωk, chosen to be the smallest root of ∆s(ω, σ). Consequently we end up

with a linear eigenvalue problem that can be solved for each value of σ. For the two values of γ used

in Figure 5, Figure 8 shows the least stable growth factor for each value of σ. The result is important

since Figure 8 clearly shows that the field is unstable for all values of σ. Hence whether one considers

the acoustic when studying premixed combustion makes a huge difference.
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Figure 8. Plot of the growth factor versus σ for γ = 2.1 (left) and γ = 6.2 (right)
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