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Abstract

This paper focuses on finding the electromag-
netic (EM) field and the time-averaged Poynt-
ing vector produced after a time harmonic EM
plane wave of an arbitrary fixed (linear) polar-
ization is incident on an infinite perfect electric
conducting (PEC) wedge. The aim is to find out
how the polarization of this incident EM wave
impacts the solution to diffraction by perfectly
conducting wedges.

We use the z invariance of the scatterer and
the PEC boundary conditions to rewrite the
EM field governed by Maxwell’s equations in
terms of two uncoupled scalar potentials or De-
bye potentials. These potentials will be func-
tions of an arbitrary polarization angle and re-
spectively solve the acoustic (or scalar) wedge
problem with Dirichlet or Neumann boundary
conditions.
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1 Introduction

The focus of this paper is the diffraction of a
time harmonic EM plane wave of any polariza-
tion by a PEC infinite wedge. To solve this, we
follow techniques in [5], [4] and [9] to rewrite
the EM field for Maxwell’s equations in terms
of two uncoupled scalar potentials called the De-
bye potentials. These potentials will both solve
the scalar infinite wedge problem with perfect
boundary conditions, i.e. Dirichlet or Neumann
boundary conditions. We find these scalar solu-
tions by the Sommerfeld-Malyuzhinet technique
outlined in [1]. We check the scalar wedge so-
lutions by comparing with results and plots ob-
tained in [1] and [3]. The most comparable pa-
per is [6] which studies an inhomogeneous (or
evanescent) EM plane wave of arbitrary polar-
ization diffracted by a PEC wedge at skew in-
cidence expanding on a simpler problem in [7].

Introduced in 1909 by P. Debye in [2], Debye
potentials have mostly been used for problems
involving conical or spherical domains, for ex-
ample [10] and [8]. These same methods can
also be applied to wedge problems.

2 Formulation

Let the region exterior to the wedge be —m <
-0y < 0 < 0, < 7, where § = £6,, are the
wedge faces. The incident wave is a time-harmonic
EM plane wave with time factor e =, wavenum-
ber k, amplitude A, polarization angle o and
incident angle 6§ = #;. The governing equa-
tions are Maxwell’s equations. We assume that
the domain is linear, isotropic, homogeneous
and source free so that the electric permittivity
e and the magnetic permeability © can be as-
sumed to be constant scalars. The electric and
magnetic phasors, £ and H, are defined from
the electric and magnetic intensity, E and H ,
by,
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Maxwell’s equations can be rewritten in terms
of the two phasors,
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The PEC boundary conditions are,
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where n is the unit normal to the wedge faces,

nlg=+a, = Teap. (5)

These boundary conditions imply that the elec-
tric field has no tangential component on the
wedge faces and that both the magnetic field
and the Poynting vector,

S =

=

x H, (6)
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have no normal component on the wedge faces.
We also define the time-averaged Poynting vec-
tor in terms of the phasors as,

5= %c%{ﬂ « H*}. (7)

3 The Electromagnetic Field

The EM field satisfying (2)-(4) can be written
in terms of an electric and a magnetic vector
potential which are both independent of z and
fixed in the z direction requiring us to construct
two scalar potentials. These two scalar poten-
tials are proportional to the total field solutions
to the acoustic wedge problem with Dirichlet

and Neumann boundary conditions, denoted &)

and &) respectively. This EM field is,
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where « is the polarization angle and denotes
the angle that the incident electric field makes
with the z-axis. ®®) and &), obtained from
[1], in integral form are,

(D) _A § cos(00y)ethreos(z)
2mi ), 4 sin(3(6 + 2)) — sin(d61)
(10)
o) _A 5 cos(6(0 4 2))e—threos(2) £
2mi Jy, 4y sin(6(0 + 2)) — sin(d6;)

(11)

where § = ﬁ and 4, v7— are the usual Som-
merfeld contours.

4 Conclusion

The EM field can be approximated as kr — oo
for a high frequency or far-field approximation.
This is used to determine £ - H and S. We find
that the problem is E-polarized if « = 0 or w
and is H-polarized if o = 7. In both cases the
total EM field is orthogonal and the Poynting
vector is confined to the z-y plane. If « is not
equal to a multiple of 7 then the total EM field
is not orthogonal and the Poynting vector is not
confined to the z-y plane.

References

[1] V. M. Babich, M. A. Lyalinov, and
V. E. Grikurov. Diffraction Theory: The
Sommerfeld-Malyuzhinets Technique. Al-
pha Science, 2007.

[2] P. Debye. Der Lichtdruck auf Kugeln von
beliebigem material. Annals of Physics,
335(11):57-136, 19009.

[3] F. Hacivelioglu, L. Sevgi, and P. Y. Ufimt-
sev. Electromagnetic Wave Scattering from
a Wedge with Perfectly Reflecting Bound-
aries : Analysis of Asymptotic Techniques.
IEEE Antennas and Propagation Maga-
zine, 53(3):232-253, 2011.

[4] G. L. James.  Geometrical Theory of
Diffraction for Electromagnetic Waves. Pe-
ter Peregrinus, The Institution of Engi-
neering and Technology, London, third edi-
tion, 1986.

[5] D. S. Jones. The Theory of Electromag-
netism. Pergamon Press, London, 1964.

[6] R.G. Kouyoumjian, T. Celandroni, G. Ma-
nara, and P. Nepa. Inhomogeneous electro-
magnetic plane wave diffraction by a per-
fectly electric conducting wedge at oblique
incidence. Radio Science, 42(6):295-304,
2007.

[7] R. G. Kouyoumjian, G. Manara, P. Nepa,
and B. J. E. Taute. The Diffraction of an
Inhomogeneous Plane Wave by a Wedge.
Radio Science, 31(6):1387-1397, 1996.

[8] M. A. Lyalinov. Electromagnetic scattering
by a plane angular sector : I . Diffraction
coefficients of the spherical wave from the
vertex. Wave Motion, 55:10-34, 2015.

[9] M. A. Lyalinov and N. Y. Zhu. Scatter-
ing of Waves by Wedges and Cones with
Impedance Boundary Conditions. Scitech,
Edison, New Jersey, 2013.

[10] V. P. Smyshlyaev. The High Fre-
quency diffraction of Electromagnetic
Waves by Cones of Arbitrary Cross Sec-
tions. SIAM Journal of Applied Mathemat-
ics, 53(3):670-688, 1993.




